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1. - Introduction 2. - Definition of a mathematical model

Let us consider a physical prohlem ""hich can be
expressed in the following mathematical form:

where V (x, y, z, t) is the unknown ('Or unknown
veelor), L is a difIerential operator of the n-th
order, V j are operators which indicate the boundary
conditions of the prohlem, f (x, y, z, t) is a known
function and gj (xo, Yo, zo, to) are lmown functions at
the boundaries.

If the operators L or Vjare non-linear operators,
the system (1) is said to be non-linear. In general,
no close solutions of the prohlem may exist. Besides
the given formulation, an alternative formulation of
a physical problem in tenus of integral or func
lional operators can also be given.

In order to obtain a solution of system (l),
approximate methods should he used, e.g. those
which are suitable for digital computers.

'\Then dealing with general non-lïnear systems,
the difficulties encountered in the application of
approximate methods, e.g. Hnite difIerence techni
ques, increase due tothe non-linearity of the
resulting algehraic equations. This happens even
for simple prohlems (1). '\Te may recall, on this
hehalf, that the Navier-Stokes equations had been
successfully integrated by the Hnite difIerence me
thod for fluids with a very low Reynolds number,
as it was shown hy Dimitrescu et al. [2J.

This situation is rapidly ehanging due to the use
of high speed digital computers with large capacity,
as shown recently by Harlow and Fromm [3J, who

The classical problem of the scour in water
streams and the evolution in time of the hed of
open water courses are discussed in this paper
from a new point of view.

Vp to now these studies have heen made mainly
with ,the help of physical models and measurements
in situ. Il is weIl known that these models are
sensible to error due to difficulties in Hnding an
adequate sealing factor which may conciliate relia
bility ,:vith the physical aspects of the bed-load
transpo11t prohlem.

This paper aÏ'lns to present a new approach by
menns of a ma:thematical model for the bed-load
transport. A preliminar version of this model has
been given by Gradowczyk [1].

To formulate the model, the difIerent physical
laws which are related to the phenomenon are
vinculated in such a way that the mathematical
model "simulates" the physical problem. Hence
the model, which can be deHned for deterministic
or stochastic variables, reproduces the principal
aspects of the scour in open channels and rivers.

This model provides also an efficient tool to
check difIerent kind of theoretical and empirical
formulas for bed entrainement in steadv and un
steady flow, with the advantage that the' operation
time and cost are respectively shorter and lower
than the ones which correspond to physical models.

This new technique may be used not only as an
independent method of analysis but also in combin
ation withan adequate type of physical experiment
ation. Itcan also be extended as to consider the
waterial moving in suspension in the fluid.

L (V) = f (;r, y, z, t),

(} = 1,2, ... , m)

(1)

* Instituto de CâiJculo- Faeurltad deCiencias Exaetas y Na
tUrll'les de Buenos Aires.

C) See for instan!ce : S. H. CrandaU «Engineering analy
sis », New York, 1956, p. 389.
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\vhere R is the hydraulic radius, C is Chezy's
coefficient,

_~~ _ 1 + ~~ oV + l oV + J = 0 (2)
ox g ox g oi

(2) This prohlem has been discussed hy Mario H. GRA

])OWCZYK : Una feoria mafemâtica para el esfudio de los pro
blemas de erosi6n. Puhlicacion N° 10 deI Instituto de Càl
cuJo. Buenos Aires (juin 1965).

(3)

(5')

(5)

(4)Q=VF

_0 (VF) + _oF = 0
ox oi

_oQ + ~~ =0
ox oi

or aIternatively:

Note that in the deduction of Eq. (2) it was
assumed that hoth steady and unsteady flow are
gradually varied, Le. the hydrostatic distrihution
of pressure prevails over the channel section.

Let us discuss now the simplifications that shall
be introduced in the formulation of the scour pro
cess of the channel bed. Instead of considering its
behaviour as a continuous medium, a global consi
deration is also used (2). Therefore no boundary
conditions at the separation boundary are needed.

where h = h (x, i) is the elevation of the water sur
face with respect to the hottom, V is the mean
value of the velocity in the direction of the now, a
is a corrective factor due to the non-uniformity of
the velocity field, 1 is the slope of the hottom of the
channel, J is the slope of the energy line E. of
steady flow and g is the acceleration due to gravity.

The slope J of the energy line can be computed
hy means of Chezy's formula:

is the total discharge at a generic transverse section
of the channel and F is the water area of the same
section.

'1'0 complete the glohal equations (2), (3) that
govern the movement of the ilow, we need the cou
tinuity equation:

The complete description of the fluid movement
in open channels may he replaced by an appro
ximate theOl'y based on global equations of En
gineering Hydraulics (see for instance reference
[5]), which shall he given in this chapter,

According to the principle of conservation of
energy, the dynamic equation for unsteady ilow
reads as follows:

A general approach to the hed-transportation
prohlem should include:

a) the complete description of the movement of the
fluid when viscosity and turbulence are taken
into account;

b) the complete description of the movement of the
hed of the channel as a continuous medium;

c) the boundary conditions at the contact plane
hetween the fluid and the hed.

3. - A model
for bed-Ioad transportation

discussed the flow of viscous incompressible fluids
arOlmd an obstacle by means of the finite difIerence
method using the complete equations for Reynolds
numbers ot < 6 000.

A difIerent approach can also be introduced.
Instead of studying the solution of system (1), we
may reformulate the physical problem considering
a simplified mode!. This simplified model should
allow us to establish a new system of relations be
tween the difIerent unknown variables (elements of
vector V), which may replace the original for
mulation of the problem as given by Eqs (1).

This system of relations can be evaluated nUll1e
rically in a sequential form with a lessel' degree of
difficuIties than the former system (1).

The system of relations which result from the
simplified model is what we called "mathematical
model" of the physical problem.

'1'0 establish a mathematical model, it is neces
sary to introduce a number of additional hypo
tlleses in the physical problem. For example, in a
problem of Engineering Hydraulics, it should be
necessary ,to adoptsimplified assumptions regard
ing hydrodynamicaspects, e.g. distribution of
velocity fields, evaluation of rugosity and turbu
lence, and to define the geometrical configuration
of the "new" medium.

Then the general laws of Continuum Mechanics
are applied to the sa defined medium, making pro
pel' use of the additional hypotheses. In this way
a system of relations between the difIerent vm'iables
can be established, which constitute the so called
"mathematical model".

Things are now ready for the first calculations
with the model, which can be performed by hand
or directly in the computer. The first results are
used to verify the accuracy of the assumptions
which are the basis of the mathematical mode!.

It goes without saying that the first l'uns of the
model in the computer correspond exactly to the
first l'uns of the physical mode!. Adjustments and
calibration techniques used in physical experiments
can also be used to adjust the mathematical model,
following a "trial and error" procedure.

'Ve shaH not discuss fm'ther the possibilities of
mathematical models [4]. It is of interest to note
that a mathematical modelcan be deterministic or
stochastic. This choice depends, besides physical
considerations, on the kind of data available.

'Ve may finally state, from a general point of
view, that what we are trying to obtain by means of
the mathematical model is a computational scheme
which enables us to perform a numerical simula
tion of the physica1 problem.

If we wish to formulate a mathematical model
for the study of scour in open channels and rivers,
which may be used to solve S'cientific and technical
steady and unsteady flow problems, it is necessary
to discuss first the basic aspects of this phenome
non from an unified point of view.
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The fint global approach to the mechanics of
bed-material movement may be traced back to
Du Boys [6], who derived a general expression for
the total bed-load transport rate pel' unit width G,
which is given in submerged \veight. The empirical
formulas adopted by many experimentalists, e.g.
Meyer-Peter, Schocktlisch have a similar structure
as Du Boy's pioneering expression:

(6)

where 1:" = y,J1J is the shear stress transmited by
the iluid to the bed material at the contact surface,
X is a coefficient and 1:"0 is the critical shear stress
below which no entrainment shouJd be expected.

A discussion of the ditIerent formulas for bed
load transport usually employed in the literature
has been given in references [7], [8].

"Vhen the bed material is a homogeneous sand,
the Meyer-Peter formula reads as follows:

(7)

It is assumed that this formula is aJso valid for
unsteady ilow. This hypothesis is similar to other
assumptions regarding constitutive equations in
Continuum Mechanics, e.g. the validity of Young's
Inodulus for static and dynamic problems.

The critical shear stress 1:"0 is an experimental
function of the modified Reynolds number

dt*=Vdjv,

2/

'Oh oz CLV av 1 av--1- + --- ~-- +------- + J = 0 (8)
'Ox ox g ox g ot

Finally, the conti nuity equation for the bed-Joad
transport is writtendown as follows:

where h = h (.T, t) = h - z is the total height of the
iluid, z = z (x, t) is the height of the scoured bottom
at a time t = to, which is measured from a system
of coordinates which is fixed at a given instant
t = to, as it is shown in Figure 3, and 1 is the bot
tom s'Jope at t = to'

'Vhen Eq. (8) is appJied to a reetanguJar stream
tube of width lJ and height h, it can also be given
in an alternative form:

where V is the mean velocity of the ilow, d is the
diameter of the bed-materiaJ parti cIe and v is the
cinematical viscosity of the iluid. 1:"0 can be taken
from Shields curve, which is shown in Figure 2
and in references [H, 10].

For the generaJ case of unsteady ilow and bed
load movemcnt, it is of convenience to rewrite
Eq. (2) in a difIerent form:

where Q is the discharge of the streamtube and
.J = Q2/C2lJ2h3.

1
li

,":/
.,;1

T(X,ta) ------------ - ------1
T(x,T)=1------- -----------

h

h

/
/

/
1

(

.-- .-.::r:...J
.---.-.........

1/

T*= T
(y - Y)d

5 w

-. (9)

where Bq. (11) represents Shields curve and Eq.
(12) is the weIl known Strickler's formula for Che-
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where f is the porosity of the bed materiaI.
'Ve have altogether eight unknown variabJes V

or Q, h, z, J, G, C, 1:"0' 1:" and five equations (3), (5)
or (5'), (7), (8) or (8'), (H). They are supplemented
by relations:

(12)

(10)

(11)1:"0 = 1:"0 (dt *)

h

3/



M. H. GRADOWCZYK and H. C. FOLGUERA

(3) See for instance: .1..L STOKER, Water Waues, New
York, (1957).
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h u = hi-l,j +
+ Zi,j_1 - Z;_1,j_l - ; Vi,j-l (Vi,j_l - Vi-l,j_l)-

_ÂXi(V. J'-V l' 1)-ÂX·(.J. 1·-I. 1) (13)gÂt'- .} l-.}- 'I,-,.,} 1-,

(16)

(17)

(15)

At (G G bi - 1 \ (18)J' . --'-1'-~)

f ( ) AX l,} l ,} b
Ys - Yw """'f i

(
h('ji.,}._)1!GCi,j = CR ---

on- -- = 0ot
therefore:

oq = 0 Le. q (;r, t) = q == constant,ox

4. - Applications

4.1. ESTABLISHMENT OF THE UNIFOHM FLOW IN AN

OPEN CHANNEL WITH A SAND BED.

4.1.1. General description.

It shaH be discussed here the establishment of
the uniform flow in an open prismatic channel of
rectangular cross-section, whose flat bottom CI , 0)
is formed by a sand bed of uniform diameter d.

The physical experiment should be performed in
such a way that the flow begins at the initial ins
tant t = to. This may be achieved in an experi
mental channel by the movement of a spillway
from its initial position to the final one, as it is
shown in Figure 4. The discharge pel' unit width
q = Q/B at the spillway may be taken approxi
mately constant with time, where B is the width of
the channel.

For the establishment of the mathematical mo
deI, we shall introduce some simplifications to the
general formulation of chapter 3. The channel is
considered as a streamtube of unitary width, so
that the influence of the walls is not taken into
account. lt is further assumed that:

These equations are written in the order as they
are calculated. The indices i, j, identify the x and
t coordinates respectively. For the sake of simpU
city the superscript "k" is dropped in the above
expressions.

This compu tational scheme is adequate for those
cases where the unsteadiness of the flow is due
principally to the movement of the bottom.

It should be stressed that we are following neither
the explicit nor the implicit finite difIerencemc
thod, but we are using the criterium described in
section 2, Le. to reformulate the physical problem
considering a simplified mathematical model which
can be evaluated numerically in a sequential fonn.
The validity of this approach, which incIudes both
explicit and implicit schemes, can be verified per
forming numerical experin}ents as described in
section 4.

The mathematical aspects of the numerical inb~

gration of the shallow water equations, when the
erodible bottom is taken into account, shall be
discussed in [14].

(4)

zy's coefficient C. It has been recently shovm by
Maggiolo and associate that CR may be considered
as a function of the modified Reynolds number
6'" * [11 J. The use of Strickler's formula, when
entrainement is considered, has been recommended
by several authors.

It should be stressed that other formulas for G,
J and C can be adopted instead of Eqs. 00-12).
The final choice of these formulas can be done
with the help of physical experiments.

In this way we have ,established the basic rela
tions governing the unsteady flow in open channels
with erodible beds, which we believe is new in this
field.

This system of equations may be used to discuss,
for example, the influence of erodible beds in the
estimation of progressive and roll waves in rivers,
predictions of flood s, socavation problems around
bridge piles. The particular election of V or Q as
an independent variable to characterize the motion
of the flow, depends upon the problem under study.

To write down the system of relations which
constitute the mathematical model, it is necessary
to cousider an appropriate "new" medium. For
this purpose we divide the channel (or portion of
the channel under study), into "m" longitudinal
streamtubes.

vVe assume thereof, that Eqs. (8) and (8') arc
vaUd for each streamtube of the channel, hence we
take R = 11 for the interior streamtubes. This is
one of the essential features of our mathematical
model and can be justified by means of the shallow
water theory (:3). This theOI'y shows that Eq. (8) is
not restrieted to one dimensional problems, i.e. the
mean velocity V can be a function of the coordinate
perpendicular to the direction of the flov,'. We
be'lieve that this property of Eq. (8) had received
little attention in Engineering Rydraulics.

Each streamtube "le" where 1 :::;; le :::;; m, is divid
ed into "n" rectangular elements of length x i("),

height h i(") and "\vidth b;("), where 1:::;; i :::;; n.
No general rule for the choice of the mode! geo

metry may be established for the election of the
integers "n" and" m". Rence the total number of
elementary volumes

hie,,) . bY') . ÂXi(7.:)

V .. = hi=l.L~L=']~ V. . _ Â;l~i (1 _ h;..;._1)
l,} h .. b. ,- J

·} At h..
r,j 1, t ..J

should be established after adequate numerical
experimentation. An example of this choice is
given in Section 4.1.

To establish the expressions of the model, partial
derivatives in the equations (5), (8), (9) are replac
ed by finite difIerences. vVe write down these
expressions at an element "i" of the streamtube
"I.e":



LA HOUILLE BLANCHE/N° 8-1965

[
q2 ] oh. _. _ .1 - --::::---- -.:::;-.. Ct, t - ieJ - .J (;t, i = to)

gh 3 (x, i = i o) V.Y

The boundary condition ('19.1) results from the
constancy of q. The condition (19.2) states that no
transport occurs at a section located immediately
to the left of section 10-10 (see Fig. 4). The other
two correspond to the initial conditions at t = to'

The election of an appropriate geometry for the
nlathema tical model is of the utmost importance.
It is necessary to adopt a geometry which should
lead to sufficiently accurate results ,vith a mini
mum of computing time. As a first approximation,
the channel is replaced by a streamtube of length
L, so that only two transverse scctions 0-0 and 10-10
are considered. This is the so-called two sectioll
model-MM-2.

The physical experiment is performed so that at
t = to the shear stress at the bot1om of the channel
1: (x, to) is bigger than 1:0, hence the bed of the
channel is eroded. As a consequence of the erosiol1,
the mean velocity V decreases and so the shear
stress 1:. If at t = T, the following inequality is
fulfilled: " (;1', T) ~ "0' then the bed material reaches
an equilibrium position and the entrainment is
finished. III this case H1e flow should become
steady and therefore the bottom surface and water
surfaceshould be parallel.

The equilibrium position in a steady flow is
calculated by means of the modified Reynolds num
ber and Shields curve, thus leading to the relation
li;,illlll/11jllitilll = 1.25 at section 0-0.

The evolution of the scour phenomenon at sectioll
0-0 of the MM-2 model has been represented ,vith
broken Hnes in Figure 5.

The process begins with a very high erosion
velocity which decreases ,vith lime. Finally a
horizontal asymptote is "practically" obtained at
t = T. 'Vith the word "practically" we here
express that although a horizontal asymptote is
impossible to be reached at a finite time T, artel'
a certain finite value t = T the increase of z is so
small that the erosion is measured in quantities E,

E being much smaller that the grain diameter d of
the sand. This has no physical meaning, hence the
calculation is stopped at t = T. To check the vali
ditY of the MM-2 model, a second mathematical
model MM-Il was established, in which the channel
was divided in 10 elements of length .::lx = L/10
(11 sections).

The calculalions performed with the MM-lI mo
deI are drawn in Figure 5 ,vith full lines showing
that the final value of the erosion at section 0-0
(x = 0, t = T) calculated by means of the MM-2
is sufficiently accurate. Besides, this new model
allows us to follow the erosion process of the bot
tom of the channel at different times. This cannot
be observed from the MM-2 model. The evolution
in time of the cross-sections 9-9 and 5-5 is also
illustrated in Figure 5.

It is of interest to show here a longitudinal sec
tion of the channel at two different times. It can
be observed, from the drawings of Figure 6, that
when t = 100 hours the bottom of the channel is
practically parallel to the superficial surface which
is almost a recta. Hence the flow may be consider
cd as uniform, which confirms our previous
assumptions. It can also he observed from Figure 5
that for t;:: 100 hs. the curves have practically hori-
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(19)

100 T(h)

--MM 11-11

--- MM 2-2

50

_------------ }O-O
-""--- 5-5

9-9

10

z (cm)

5/

in Eq. (8') may be disregarded.

The equatiol1 (lB) reduces to:

h;,j = h;_l,j +
1

-[··l-----(-;;~/··-:I--'~---··-)-··J-(zi,j-l - Zi-l,j_l - .::lX;Ji_ 1)
- a q- g 1"i_l,j

(1;3')

which is also confirmed in physical experilnents.
According to these simplifications unstcadiness

is due to the erosiol1 of the hed only, and the term:

It is not necessary to use Eq. (14) beeause
q = Vh = constant. The remaining relations of
the model do not change.

The corresponding boundary conditions read as
follows:

1

1
5'10

1
1

fIi ==l> 1

x..

1·
L= 5,Om .1

4/

11 (x = 0, t) - h (x = 0, t) - z (x = 0, t) = constant

G Cy = L+, t) = 0

Z (;1', t = to) = 0

/
/

/
1

1
1

1 1
1
1
1

2
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)'

z(cm) ~ /x

~ / //
2 l.:~~~o-?'=_-----x-----x-------x------x--- ..i(/!

T~25000 s %fx--- ~-----x-------X----_l(---·11 1

Il ;

U
il

T~ 10000 s __x x_---4
x------------x-----x------ )l

/11\
/ Il \

x~.:.~~~o_~ _>(-----x---...---"""----.../ Il \
0,7'------+~~++_-~~'_+_~+_-~~~~_-+_~.........,....

o-~.fu..(~)6.x m
11

zontal asymptotes. The relation hinitilll/hfinlll results
equal to 1.24, which practically agrees with the
theoretical prediction given above.

An intennediate model with five elements was
also considered, whose results are practically in
coincidence with those given by the M-M-11 model,
so that they are not represented in Figure 5. This
assures the mathematical convergence of the cal
culations done with the model M-M-ll as weIl as
the validity of the assumptions used in the fornHl
lation of model MM-2.

4.1.2. Convergence.

The simplifications introduced in 4.1.1. reduce
the mathematical formulation of the problem to a
system of two partial ditTerential equations.

-f.. oh oz T-gl (li) ---- + J (a) = 0
OX OX

(20)

--- oT! oz
g" (h) - + -- = 0

- OX ot

where gl (n), g2 (h) are lmown functions of the de
pendent variable h: This system of difIerential
equations is of the hyperbolic type.

It is weIl known, when the method of finite differ
ences is applied to hyperbolic and parabolic partial
differential equations, that hvo ditTerent kinds of
problems appear: convergence and stability.

The behaviour of the weIl known hyperbolic
equation (wave equation):

(21)

with appropriate boundary conditions, had been
studied by many authors. As a result of this
analysis, the error of the finite difl'erence method
depends, generaIly, upon the ratio:

At
--=0'
..:lx

where ..:lt, ..:l.T are the chosen intervals. It should
he noted that Eq. (21) is written in non-dimensional
quantities so that 0' is also non-dimensional.
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vVhen the usual explicit computational scheme
is adopted and no rounding errors in the computa
tions and in the boundary values are considered,
there is a value 0' for which an error of the order
(..:lX)2 is achieved. For Eq. (21) this limit value is
equal to one.

Although we have formally avoided the numer
ical integration of Eqs. (20) by the use of the com
putational scheme which we named the "mathe
matical mode!," it is of interest to investigate
,vhether the use of the ratio 0' helps in the study of
the convergence of our calculations ,vith the model.

vVe performed a large set of calculations with the
MM-11 model, using different values of 0', which are
shown in Figure 7. They should allows us to check
the influence of 0'.

The coordinate Zo represents the erosion of the
section 0-0 (,T = 0, t = constant). The curves of
Figure 7 represent the values of Zo for different
values of 0' at ditTerent instants t = constant of the
process.

It can be observed that the error is laro'er at theb

beginning of the entrainment process. The limit
value of Zo when t = T is practically independent of
the parameter 0', only when 0' is smaller than O'/;.

This is a critical parameter which determines nu
merical instability of the computational scheme.
This aspect of the problem shall be discussed in
section 4.1.3.

No attempt should be done here ta show how it
is possible to integrate Eqs. (20) by the "method of
characteristics". H is clear that this field is a new
one so we feel that emphasisshould be made first
on the fundamental physical ideas rather than on
a thoroughly discussion of the mathematical aspects
of the problem. This shall be discussed in [14].

4.1.3. Stability of the mathematical model.

The numerical instability which appears in the
finite-ditTerence solution of hyperbO'lic and paI'abolic
partial difl'erential equations is due to erraI' propa
gation, and it appears also in our mathematical
model.

The finite-difference schemes can be intrinsi
calIy stable, unstable or conditionally stable. This
depends on the kind of net chosen.

In the case of the wave equation (21), it can he
proved that the explicit difIerence scheme is stable
if 0' ~ 1.

The numerical value of the parameter 0' = ('f/;

which determined the limit of stabiIity in our model
was obtained experimentally from our calculations.
It is shown in Figure 7 with a broken vertical line.

H couId be possible ta develop a stability theOl'y
for our case, which may determine ('f", in a theore
tical form. This ohj:ective is however behind the
pm'pose of this paper.

It is of interest to give here a physical explanation
of the numerical instability of the mathematical
model, which can be useful for practical applica
tions, From the point of view of the calculations
performed with the mode!, as the hydrodynamic
condition of the flow is maintained fixed from an
instant t to t + At, the corresponding erosion values
do not correspond exactly with the real ones. These
ditTerences increase for laI'ger values of ..:lt and may



cause, in the next step, a perturbation which chan
ges the ph.;ysical character of the flow (e.g. negative
values of 11).

4.2. EROSION AHOUND PILES.

The second prohlem which shall be considered in
this paper is the study of the erosion process around
an obstacle.

It was the intention of the authors to reproduce
by means of the model a large series of experi
ments on erosion around piles which had been per
formed by O. J. Maggiolo and associates at the
Laboratorio de Mecanica de Flùidos, FacuHad de
Ingenieria, Montevideo (Uruguay) [12]. \Ve reprod
uced experiment No. .30, in which a rectangular pile
of square cross-section (0.10 X 0.10 mts) is located
in the middle of the channel shown in Figure 4.

The determination of the hydrodynamic charac
teristics of the flow for this particular problem is
not an easy task; therefore we established simpli
ficative hypotheses.

It is well known that due to the turbulence of the
flow, a surface of separation appears around the
pile. Therefore we estimate this surface according
to the physical experiments and we then calculate
the velocity field and the corresponding streamtubes
considering the flow as a plane irrotational one.

LA HOUILLE BLANCHE/N° 8-1965

Due to this simplification the turbulent zone around
the pile is not considered in the mathematical
model.

As the flow is symmetric, only one haU of the
channel was considered, which was divided into
five streamtubes of twelve elements each, and we
applied Eqs (13-18) to each streamtube.

The calculations follow a similar pattern as
those of problem 4.1. The unsteadiness of the flow
was also neglected.

The planimetry of the eroded zone around the
pile at t = 80 hours, which results from the calcul
ations done ,vith the model, is shown in Figure 8,
where the level lines of depth z = constant are
given in centimeters.

The experimental results shown in Figure 4 of
reference (12) are drawn with broken lines in
Figure 8.

It can be observed that good agreement exists
between the mathematical model and the physical
experience. The evolution of the erosion with time
foHows also remarkably weIl the fOrIn of the
experimental curves.

A good agreement has also been obtained for
other experiments of references [12] and [131,
even in those cases where the dynamic equi
librium of the socavation process is achieved at a
relatively short time.

A complete discussion of these results shall be
published elsewhere.
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5. - Mathematical
versus physical models

As it ,vas shown in Chapter 4, it is possible to
ob tain good qualitative as weIl as quantitative re
suIts in a comparatively short time in comparison
with physical experiments. So we should like to
give here an appreciation of this new technique in
comparison with physical models.

ADVANTAGES :

a) Possibility of performing a large series of nu
merical experiments in a short time, e.g.
80 hours of the physical experiment No. ~32

reduces to a few hours of computing time of our
model in the Mercury computer. 'Vith the
faster computers working at present, this time
should be reduced to a few.minutes or even less.

b) The mathematical model is more flexible to data
changes than the physicalmodel, so that a larger
number of modifications and changes of geo
metry, etc. may be performed and processed with
practically no delay in time. This is achieved
by adequate programming;

c) The resuIts are obtained for any time and for
aIl the field;

d) No distorsions due to the scaling of the model
appear. This aspect is of the upmost impor
tance because the last contributions in the field
of the bed-load transportation, e.g. reference
[10], show that not only the geometric scale
should be conserved, but also the modified Hey
nolds number dl. *. This situation is very difIi
cuIt to reproduce in the physical model;

e) Economie reasons.

DrSADVANTAGES :

a) Difliculty in determining the hydrodynamic cha
racteristics of the flow;

b) The obtaining of appropriate expressions for the
empirical or experimental coeflicients which
appear in the model expressions.

The latter disadvantage may be overcüme by per
forming basic physical experiments to de termine
those physical laws which are diflicult to establish
in a theoretieal form, e.g. the evaluation of the
rate of hed-load transportation G.

The former disadvantage may be avoided if the
complete equations of the flo,v are considered. The
excellent results obtained by Harlow and Fromm
are an example of such an agreement.

It is also possible to use for this purpose special
physical models, especially in those cases where
obstacles and other singularities appear. These
physical models are considerably cheaper than a
model for the whole problem.

The convenience of using both techniques to
gether, in those cases in which there is difficuIty
to obtain the charaeteristics of the flow, can be
concluded from the above considerations. Hence
the mathematical model should work as a "simul
atOI''' of the total problem, with the advantages of
reliability, flexibility and accuracy.
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The link of both numerical and experimental
techniques constitute and "hybrid system" that
should help towards a better understanding of this
challenging problem.

It is self-evident that much work need to be done
in this direction, and we hope to continue it in an
effort to join together engineers, applied mathema
ticians and physicists in this diflicuIt branch of
Mechanics.
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Résumé

L'analyse des affouillements dans des canaux découverts
à l'aide de modèles mathématiques

par M. H. Gradowczyk * et H. C. Foiguera *

Le problème classique des affouillements dans des COllrs d'eau découverts et ,J'évolution de leur lit dans le temps
son t ici discutés.

Jusqu'à présent on avait réalisé de telles études au moyen, essentiellement, de modèles physiques et de mesures
sur place.

La présente communication offre une nouvelle méthode d'aborder ce problème, à l'aide d'une formulation ma
thématique du processus d'érosion.

Le chapitre 2 est livré à une discussion générale des différentes façons de considérer ,le problème physique qui
trouve son expression dans .J'équation (1). Par suite de cette analyse, on introduit la notion d'un modèle mathémati
que. Ce modèle se traduit par un système de relation,s qui remplace le problème d'origine (1), et qui peut se calculer
plus facilement suivant une forme séquentieUe, que seIon la méthode classique des différences finies.

On donne au chapitre 3 une descl'iption complète de la formulation analytique générale du processus d'érosion.
Une telle analyse devrait obIigatoirement comporter:

a) Une description complète de l'écoulement dans le cas de la prise en considération de la viscosité et de la
turbulence;

b) La description des mouvements du lit du cours d'eau en tant que milieu continu;
c) Les conditions aux limites au plan de contact fluide/lit.

La description de l'écoulement en canal découvert est remplacée par une théorie approchée sur la base des
équations g,Jobales du génie hydraulique, dont les équations sont: (8) ou (8'); (5) ou (5').

On considère que le fluide ne transporte aucun matériau en suspension.
On utilise une méthode globa,Je également dans le cas du lit du canal. Il n'ya pas besoin de connaître les condi

tions aux liInites à la surface de séparation.
Nous avons retenu la formule de Meyer-Peter (7) pour ,Je taux global de transport solide et nous avons également

formulé l'équation de continuité (9) pour le transport solide. Nous avons au total huit paramètres inconnus: V ou
Q, h, z, l, G, C, et 1:0 et 1:, et cin'CI équations: (3), (5) ou (5'), (7), (8) ou (8') et (9). Celles-ci sont complétées par les
relations (10), (11), (12). Donc, ,le processus d'érosion est déterminé. Soulignons que d'autres formules sont égale
ment valables pour G, 1 et C.

Ce système d'équations peut servir, par exemple, pour la discussion de l'influence des lits affouillables dans
l'évaluation des ondes, des crues et des problèmes d'excavation autour des piles de pont.

Les expressions du 'schéma de calcul sont explicitées ,en (13-18), citées dans l'ordrede calcul. Les indices i et j
identifient les coordonnées x et i, respectivement. Ce schéma est valable 'pour les cas d'une instabilité d'écoulement
due principalement aux mouvements du lit.

En illuskation des applications ,du modèle, on donne la di,scusion de deux exemples. En 4.1, on considère l'éta
blissement d'un écoulement uniforme dans un canal découvert ayant un lit de sahle (fig. 4). L'évolution dans le temps
des phénomènes d'affouillement d,ans différentes sections du canal est mise en évidence en 5. Les valeurs asympto
tes s'accordent bien avec les résultats théoriques. La figure 6 permet d'observer qu'à i = 100 h, le fond du canal est
pratiquement paral1èle à la surface libre, qui est presque plane. On peut donc considérer que l'écoulement est uni
forme.

La convergence, ainsi que la stabilité, du schéma de calcul, sont également traitées.
Au chapitre 4.2, OII examine l'érosion autour d'une pile de section rectangulaire. Afin de déterminer les carac

téristiques hydrodynamiques de l'écoulement, nous avons évalué la surface de séparation autour de la pile d'après
des expériences physiques, puis nous avons calculé le champ des vitesses et les filets d'écoulement correspondants,
en employant l'hypothèse d'un écoulement plan et irrotationnel. Ensuite nous avons appliqué les équations (13-18) à
chaque filet.

A la figure 8, la planimétrie de la zone affouillée autour cie lapHe ù i = 80 h est indiquée en traits pleins, où
les cotes (z = Cte) sont données en cm. Les résultats expérimen,taux (expérience n° 30 de la référence [12]) sont
égailement indiqués, en pointillé.

Enfin, au chapitre 5, on fait le point des avantages et des inconvé.I!ients relatifs cles deux types de modèles,
physique et mathématique. Cette analyse permet de conclure à l'intérét d'un emploi conjugué des deux techniques.
Leur association constitue une «solution hybride», appelée à favori,ser une meilleure compréhension de ce pro
blème difficile.

Le modèle mathématique sera donc pris pour la «simulation» du problème clans son ensemble, alors que le
modèle physique fournira des renseignements sur des points particuliers.

* Institut de Calcul, Faculté des Seîences exactes et naturelles de Buenos Aires.
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