Free Access
Issue
LHB
Number 5-6, Décembre 2019
Page(s) 59 - 66
DOI https://doi.org/10.1051/lhb/2019030
Published online 23 December 2019
  • Adalsteinsson D, Sethian J. 1999. The fast construction of extension velocities in Level Set methods. J Comput Phys 148: 2–22. [Google Scholar]
  • Balay S, Gropp WD, McInnes LC, Smith BF. 1997. Efficient management of parallelism in object oriented numerical software libraries. Modern software tools in scientific computing. Birkhäuser Press, pp. 163–202. [Google Scholar]
  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, et al. 2016. PETSc users manual. Argonne National Laboratory. [CrossRef] [Google Scholar]
  • Castiglione T, Stern F, Bova S, Kandasamy M. 2011. Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves. Ocean Engineering 38: 1806–1822. [CrossRef] [Google Scholar]
  • Drouet A. 2011. Apports de la résolution mutli-blocs pour la simulation de la manœuvrabilité des sous-marins et des bâtiments de surface. Thèse de doctorat, École Centrale de Nantes. [Google Scholar]
  • Ferrant P, Gentaz L, Alessandrini B, Le Touzé D. 2003. A potential/RANSE approach for regular water wave diffraction about 2D structures. Ship Technol Res 50: 165–171. [CrossRef] [Google Scholar]
  • He W, Castiglione T, Kandasamy M, Stern F. 2015. Numerical analysis of the interference effects on resistance, sinkage and trim of a fast catamaran. J Marine Sci Technol 20(12): 292–308. [CrossRef] [Google Scholar]
  • Luquet R. 2007. Simulation numérique de l'écoulement visqueux autour d'un navire soumis à une houle quelconque. Thèse de doctorat, École Centrale de Nantes. [Google Scholar]
  • Monroy C. 2010. Simulation numérique de l'interaction houle-structure en fluide visqueux par décomposition fonctionnelle. Thèse de doctorat, École Centrale de Nantes. [Google Scholar]
  • Reliquet G. 2013. Simulation numérique de l'interaction houle/carène par couplage d'une méthode spectrale HOS avec un algorithme de capture d'interface. Thèse de doctorat, École Centrale de Nantes. [Google Scholar]
  • Reliquet G, Robert M, Drouet A, Guillerm P, Gentaz L, Ferrant P. 2014. Application du couplage SWENSE-Level Set aux simulations de navires sur houles complexes. 14e Journées de l'Hydrodynamique. Val de Reuil. [Google Scholar]
  • Rhie C, Chow W. 1983. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J 21: 179–195. [Google Scholar]
  • Visonneau M, Deng G, Queutey P, Wackers J, Mallol B. 2012. Anisotropic grid adaptation for RANS simulation of a fast manoeuvring. 4th High Performance Yacht Design Conference. Auckland. [Google Scholar]
  • Vukčević V, Jasak H, Malenica Š. 2016. Decomposition model for naval hydrodynamic applications. Part I: computational method. Ocean Engineering 121: 37–46. [CrossRef] [Google Scholar]
  • Wilcox D. 1988. Reassessment of the scale determining equation for advance turbulence models. AIAA J 26: 1299–1310. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.