Free Access
Issue
La Houille Blanche
Number 3, Juin 2011
Page(s) 5 - 16
DOI https://doi.org/10.1051/lhb/2011026
Published online 07 July 2011
  • Bakhmeteff B.A., and Matzke A.E. (1936) — The Hydraulic Jump in Terms of Dynamic Similarity Transactions. ASCE. 101 630-647 et 648-680 [Google Scholar]
  • Belanger J.B. (1841) — Notes sur l’Hydraulique (‘Notes on Hydraulic Engineering.’) Ecole Royale des Ponts et Chaussées, Paris, France, session 1841-1842 (in French). 223 pages [Google Scholar]
  • Chachereau Y., and Chanson H. (2010) — Free-surface fluctuations and turbulence in hydraulic jumps. (DOI 10.1016/j.expthermflusci.2011.01.009) Experimental Thermal and Fluid Science. 35 896-909 [CrossRef] [Google Scholar]
  • Chanson H. (1995) — Air Entrainment in Two-Dimensional Turbulent Shear Flows with Partially Developed Inflow Conditions. International Journal of Multiphase Flow. 21 (6) 1107-1121 [CrossRef] [Google Scholar]
  • Chanson H. (1997) — Air Bubble Entrainment in Free-Surface Turbulent Shear Flows. Academic Press, London, UK 401 pages [Google Scholar]
  • Chanson H. (2007) — Bubbly Flow Structure in Hydraulic Jump (DOI: 10.1016/j.euromechflu.2006.08.001).European Journal of Mechanics B/Fluids. 26 (3) 367-384 [CrossRef] [Google Scholar]
  • Chanson H. (2009) — Current Knowledge In Hydraulic Jumps And Related Phenomena. A Survey of Experimental Results (DOI: 10.1016/j.euromechflu.2008.06.004).European Journal of Mechanics B/Fluids. 28 (2) 191-210 [CrossRef] [Google Scholar]
  • Chanson H. (2009) — Un Hydraulicien d’Exception bien en avance sur son Époque: Jean-Baptiste Charles Joseph Bélanger (1790-1874) (‘An Exceptional Hydraulic Engineer ahead of his Time: Jean-Baptiste Charles Joseph Bélanger (1790-1874).’) (DOI 10.1051/lhb/2009072) (in French). La Houille Blanche. 5 183-188 [CrossRef] [EDP Sciences] [Google Scholar]
  • Chanson H. (2009) — Turbulent Air-water Flows in Hydraulic Structures: Dynamic Similarity and Scale Effects (DOI: 10.1007/s10652-008-9078-3). Environmental Fluid Mechanics. 9 (2) 125-142 [CrossRef] [Google Scholar]
  • Chanson H. (2010) — Convective Transport of Air Bubbles in Strong Hydraulic Jumps (DOI: 10.1016/j.ijmultiphaseflow.2010.05.006). International Journal of Multiphase Flow. 36 (10) 798-814 [CrossRef] [Google Scholar]
  • Chanson H., and Brattberg T. (2000) — Experimental Study of the Air-Water Shear Flow in a Hydraulic Jump. International Journal of Multiphase Flow. 26 (4) 583-607 [CrossRef] [Google Scholar]
  • Chanson H., and Gualtieri C. (2008) — Similitude and Scale Effects of Air Entrainment in Hydraulic Jumps. Journal of Hydraulic Research, IAHR. 46 (1) 35-44 [CrossRef] [Google Scholar]
  • Chanson H., and Montes J.S. (1995) — Characteristics of Undular Hydraulic Jumps. Experimental Apparatus and Flow Patterns. Journal of Hydraulic Engineering, ASCE. 121 (2)129-144 et 161-164 [CrossRef] [Google Scholar]
  • Chanson H., Aoki S., and Hoque A. (2006) — Bubble Entrainment and Dispersion in Plunging Jet Flows: Freshwater versus Seawater (DOI:10.2112/03-0112.1). Journal of Coastal Research. 22 (3), May 664-677 [CrossRef] [Google Scholar]
  • Chow V.T. (1973) — Open Channel Hydraulics. McGraw-Hill International, New York, USA [Google Scholar]
  • Cummings P.D., and Chanson H. (1997) — Air Entrainment in the Developing Flow Region of Plunging Jets. Part 2: Experimental. Journal of Fluids Engineering, Trans. ASME. 119 (3) 603-608 [CrossRef] [Google Scholar]
  • Gonzalez A.E., and Bombardelli F.A.(2005) — Two-Phase Flow Theoretical and Numerical Models for Hydraulic Jumps, including Air Entrainment. Proc. 31st Biennial IAHR Congress. Seoul, Korea, B.H. Jun, S.I. Lee, I.W. Seo and G.W. Choi Editors (CD-ROM) [Google Scholar]
  • Gualtieri C., and Chanson H. (2010) — Effect of Froude Number on Bubble Clustering in a Hydraulic Jump (DOI: 10.1080/00221686.2010.491688). Journal of Hydraulic Research, IAHR. 48 (4) 504-508 [CrossRef] [Google Scholar]
  • Hager W.H. (1992) — Energy Dissipators and Hydraulic Jump. Kluwer Academic Publ., Water Science and Technology Library. 8 288 p [Google Scholar]
  • Henderson F.M. (1966) — Open Channel Flow. MacMillan Company, New York, USA [Google Scholar]
  • Hoyt J.W., and Sellin R.H.J. (1989) — Hydraulic Jump as ‘Mixing Layer. Journal of Hydraulic Engineering, ASCE. 115 (12) 1607-1614 [CrossRef] [Google Scholar]
  • Kobus H. (1984) — Local Air Entrainment and Detrainment. Proc. Int. Symp. on Scale Effects in Modelling Hydraulic Structures, IAHR. Esslingen, Germany [Google Scholar]
  • Kucukali S., and Chanson H. (2008) — Turbulence Measurements in Hydraulic Jumps with Partially-Developed Inflow Conditions (DOI: 10.1016/j.expthermflusci.2008.06.012). Experimental Thermal and Fluid Science. 33 (1) 41-53 [CrossRef] [Google Scholar]
  • Macdonald R.G., Alexander J., Bacon J.C., and Cooker M.J. (2009) — Flow Patterns, Sedimentation and Deposit Architecture under a Hydraulic Jump on a Non-Eroding Bed: Defining Hydraulic Jump Unit Bars (DOI: 10.1111/j.1365-3091.2008.01037.x). Sedimentology. 56 1346-1367 [CrossRef] [Google Scholar]
  • Lemoine R. (1948) — Sur les Ondes Positives de Translation dans les Canaux et sur le Ressaut Ondulé de Faible Amplitude (‘On the Positive Surges in Channels and on the Undular Jumps of Low Wave Height.’) (in French). La Houille Blanche. 2 183-185 [Google Scholar]
  • Lennon J.M., and Hill D.F. (2006) — Particle Image Velocimetry Measurements of Undular and Hydraulic Jumps. Journal of Hydraulic Engineering. 132 (12) 1283-1294 [CrossRef] [Google Scholar]
  • Leutheusser H.J., and Schiller E.J. (1975) — Hydraulic Jump in a Rough Channel. Water Power & Dam Construction. 27 (5) 186-191 [Google Scholar]
  • Liggett J.A. (1994) — Fluid Mechanics. McGraw-Hill, New York, USA [Google Scholar]
  • Liu M., Rajaratnam N., and Zhu D.Z. (2004) — Turbulent Structure of Hydraulic Jumps of Low Froude Numbers. Journal of Hydraulic Engineering, ASCE. 130 (6) 511-520 [CrossRef] [Google Scholar]
  • Long D., Rajaratnam N., Steffler P.M., and Smy P.R. (1991) — Structure of Flow in Hydraulic Jumps. Journal of Hydraulic Research, IAHR. 29 (2) 207-218 [CrossRef] [Google Scholar]
  • Lubin P., Glockner S., and Chanson H.(2009) — Numerical Simulation of Air Entrainment and Turbulence in a Hydraulic Jump. Proc. Colloque SHF Modèles Physiques Hydrauliques: Outils Indispensables du XXIe Siècle?, Société Hydrotechnique de France, Lyon, France, 24-25 Nov. 109-114 [Google Scholar]
  • Mossa M., and Tolve U. (1998) — Flow Visualization in Bubbly Two-Phase Hydraulic Jump. Journal Fluids Engineering, ASME. 120 160-165 [CrossRef] [Google Scholar]
  • Mouazé D., Murzyn F., and Chaplin J.R. (2005) — Free Surface Length Scale Estimation in Hydraulic Jumps. Journal of Fluids Engineering, Trans. ASME. 127 1191-1193 [CrossRef] [Google Scholar]
  • Murzyn F. (2010) — Assessment of Different Experimental Techniques to Investigate the Hydraulic Jump: Do They Lead to the Same Results?. Hydraulic Structures: Useful Water Harvesting Systems or Relics?, Proc. 3rd International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS’10), 2-3 May 2010, Edinburgh, Scotland, R. Janssen and H. Chanson (Eds), Hydraulic Model Report CH80/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia. 3-36 [Google Scholar]
  • Murzyn F., and Chanson H. (2008) — Experimental Assessment of Scale Effects Affecting Two-Phase Flow Properties in Hydraulic Jumps (DOI: 10.1007/s00348-008-0494-4). Experiments in Fluids. 45 (3) 513-521 [CrossRef] [Google Scholar]
  • Murzyn F., and Chanson H. (2009) — Free-Surface Fluctuations in Hydraulic Jumps: Experimental Observations (DOI: 10.1016/j.expthermflusci.2009.06.003). Experimental Thermal and Fluid Science. 33 (7) 1055-1064 [CrossRef] [Google Scholar]
  • Murzyn F., Mouazé D., and Chaplin J.R. (2005) — Optical Fibre Probe Measurements of Bubbly Flow in Hydraulic Jumps. International Journal of Multiphase Flow. 31 (1) 141-154 [CrossRef] [Google Scholar]
  • Murzyn F., Mouazé D., and Chaplin J.R. (2007) — Air-Water Interface Dynamic and Free Surface Features in Hydraulic Jumps. Journal of Hydraulic Research, IAHR. 45 (5) 679-685 [CrossRef] [Google Scholar]
  • Novak P., and Cabelka J. (1981) — Models in Hydraulic Engineering. Physical Principles and Design Applications. Pitman Publ., London, UK. [Google Scholar]
  • Pagliara S., Lotti I., and Palermo M. (2008) — Hydraulic Jump on Rough Bed of Stream Rehabilitation Structures. Journal of Hydro-Environment Research. 2 (1) 29-38 [CrossRef] [Google Scholar]
  • Rajaratnam N. (1962) — An Experimental Study of Air Entrainment Characteristics of the Hydraulic Jump. Jl of Instn. Eng. India. 42 (7) 247-273 [Google Scholar]
  • Rajaratnam N. (1965) — The Hydraulic Jump as a Wall Jet. Journal of Hydraulic Division, ASCE, Vol. 91, No. HY5, pp. 107-132. Discussion. 91 (HY5), 92 (HY3), 93 (HY1) 107-132, 110-123, 74-76 [Google Scholar]
  • Rajaratnam N. (1968) — Hydraulic Jumps on Rough Beds. Trans. Engrg. Institute of Canada. 11 (A-2) I-VIII [Google Scholar]
  • Rao N.S.L., and Kobus H.E. (1971) — Characteristics of Self-Aerated Free-Surface Flows. Water and Waste Water/Current Research and Practice. Eric Schmidt Verlag, Berlin, Germany. 10. [Google Scholar]
  • Rehbock T. (1929) — The River Hydraulic Laboratory of the Technical University of Karlsruhe. Hydraulic Laboratory Practice. ASME, , New York, USA. 111-242 [Google Scholar]
  • Resch F.J., and Leutheusser H.J.(1972) — Reynolds Stress Measurements in Hydraulic Jumps. Journal of Hydraulic Research, IAHR. 10 (4) 409-430 [CrossRef] [Google Scholar]
  • Resch F.J., and Leutheusser H.J.(1972) — Le Ressaut Hydraulique: mesure de Turbulence dans la Région Diphasique (‘The Hydraulic Jump: Turbulence Measurements in the Two-Phase Flow Region.’) (in French). La Houille Blanche. 4 279-293 [CrossRef] [EDP Sciences] [Google Scholar]
  • Rodríguez-Rodríguez J., Marugán-Cruz C., Aliseda A., and Lasheras J.C.(2011) — Dynamics of Large Turbulent Structures in a Steady Breaker. (DOI 10.1016/j.expthermflusci.2010.09.012). Experimental Thermal and Fluid Science. 35 301-310 [CrossRef] [Google Scholar]
  • Rouse H., Siao T.T., and Nagaratnam S.(1959) — Turbulence Characteristics of the Hydraulic Jump. Transactions, ASCE. 124 926-950 [Google Scholar]
  • Thandaveswara B.S. (1974) — Self Aerated Flow Characteristics in Developing Zones and in Hydraulic Jump s. Ph.D. thesis, Dept. of Civil Engrg., Indian Institute of Science, Bangalore, India. 399 pages [Google Scholar]
  • Valiani A. (1997) — Linear and Angular Momentum Conservation in Hydraulic Jump. Journal of Hydraulic Research, IAHR. 35 (3) 323-354 [CrossRef] [Google Scholar]
  • Viollet P.L., Chabard J.P., Esposito P., et Laurence D. (2002) — Mécanique des Fluides Appliquée. Ecoulements Incompressibles dans les Circuits, Canaux et Rivières, autour des Structures et dans l’Environnement. (Applied Fluid Mechanics. Incompressible Flows in Pipes, Channels and Rivers, around Structures and in the Environment.’). Presses des Ponts et Chaussées, Paris, France, 2e édition (in French). 367 pages [Google Scholar]
  • Wood I.R. (1991) — Air Entrainment in Free-Surface Flows. IAHR Hydraulic Structures Design Manual, Hydraulic Design Considerations, Balkema Publ., Rotterdam, The Netherlands. 4 149 pages [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.