Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Depth‐averaged non‐hydrostatic extension for shallow water equations with quadratic vertical pressure profile: equivalence to Boussinesq‐type equations

Anja Jeschke, Geir K. Pedersen, Stefan Vater and Jörn Behrens
International Journal for Numerical Methods in Fluids 84 (10) 569 (2017)
https://doi.org/10.1002/fld.4361

Non-Hydrostatic Free Surface Flows

Oscar Castro-Orgaz and Willi H. Hager
Advances in Geophysical and Environmental Mechanics and Mathematics, Non-Hydrostatic Free Surface Flows 563 (2017)
https://doi.org/10.1007/978-3-319-47971-2_6

A discontinuous Galerkin method for a new class of Green–Naghdi equations on simplicial unstructured meshes

A. Duran and F. Marche
Applied Mathematical Modelling 45 840 (2017)
https://doi.org/10.1016/j.apm.2017.01.030

Non-Hydrostatic Free Surface Flows

Oscar Castro-Orgaz and Willi H. Hager
Advances in Geophysical and Environmental Mechanics and Mathematics, Non-Hydrostatic Free Surface Flows 17 (2017)
https://doi.org/10.1007/978-3-319-47971-2_2

Non-Hydrostatic Free Surface Flows

Oscar Castro-Orgaz and Willi H. Hager
Advances in Geophysical and Environmental Mechanics and Mathematics, Non-Hydrostatic Free Surface Flows 1 (2017)
https://doi.org/10.1007/978-3-319-47971-2_1

Algebraic method for constructing singular steady solitary waves: a case study

Didier Clamond, Denys Dutykh and André Galligo
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2191) 20160194 (2016)
https://doi.org/10.1098/rspa.2016.0194

Nonhydrostatic Dam Break Flows. I: Physical Equations and Numerical Schemes

Francisco Nicolás Cantero-Chinchilla, Oscar Castro-Orgaz, Subhasish Dey and Jose Luis Ayuso
Journal of Hydraulic Engineering 142 (12) (2016)
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001205

Multi-symplectic structure of fully nonlinear weakly dispersive internal gravity waves

Didier Clamond and Denys Dutykh
Journal of Physics A: Mathematical and Theoretical 49 (31) 31LT01 (2016)
https://doi.org/10.1088/1751-8113/49/31/31LT01

Hamiltonian structure for two-dimensional extended Green–Naghdi equations

Yoshimasa Matsuno
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2190) 20160127 (2016)
https://doi.org/10.1098/rspa.2016.0127

Symmetries of the hyperbolic shallow water equations and the Green–Naghdi model in Lagrangian coordinates

Piyanuch Siriwat, Chompit Kaewmanee and Sergey V. Meleshko
International Journal of Non-Linear Mechanics 86 185 (2016)
https://doi.org/10.1016/j.ijnonlinmec.2016.08.005

Spilling breakers in shallow water: applications to Favre waves and to the shoaling and breaking of solitary waves

S. L. Gavrilyuk, V. Yu. Liapidevskii and A. A. Chesnokov
Journal of Fluid Mechanics 808 441 (2016)
https://doi.org/10.1017/jfm.2016.662

On the multi-symplectic structure of the Serre–Green–Naghdi equations

Marx Chhay, Denys Dutykh and Didier Clamond
Journal of Physics A: Mathematical and Theoretical 49 (3) 03LT01 (2016)
https://doi.org/10.1088/1751-8113/49/3/03LT01

Mechanical balance laws for fully nonlinear and weakly dispersive water waves

Henrik Kalisch, Zahra Khorsand and Dimitrios Mitsotakis
Physica D: Nonlinear Phenomena 333 243 (2016)
https://doi.org/10.1016/j.physd.2016.03.001

Comparative study on the accuracy of solitary wave generations in an ISPH-based numerical wave flume

Asghar Farhadi, Hamed Ershadi, Homayoun Emdad and Ebrahim Goshtasbi Rad
Applied Ocean Research 54 115 (2016)
https://doi.org/10.1016/j.apor.2015.11.003

Closure to “Boussinesq- and Serre-type models with improved linear dispersion characteristics: applications” by JOSÉ S. ANTUNES DO CARMO, J. Hydraulic Res., 51(6), 2013, 719–727.

José S. Antunes do Carmo
Journal of Hydraulic Research 53 (2) 284 (2015)
https://doi.org/10.1080/00221686.2015.1012656

Modelling turbulence generation in solitary waves on shear shallow water flows

G. L. Richard and S. L. Gavrilyuk
Journal of Fluid Mechanics 773 49 (2015)
https://doi.org/10.1017/jfm.2015.236

“Boussinesq- and Serre-type models with improved linear dispersion characteristics: applications”

Oscar Castro-Orgaz and Willi H. Hager
Journal of Hydraulic Research 53 (2) 282 (2015)
https://doi.org/10.1080/00221686.2015.1012655

Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

Francisco Cantero, Oscar Castro-Orgaz, Amanda Garcia-Marín, José Luis Ayuso and Subhasish Dey
Journal of Hydrology 529 1644 (2015)
https://doi.org/10.1016/j.jhydrol.2015.07.056

Interactions of large amplitude solitary waves in viscous fluid conduits

Nicholas K. Lowman, M. A. Hoefer and G. A. El
Journal of Fluid Mechanics 750 372 (2014)
https://doi.org/10.1017/jfm.2014.273

Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion

Claudio Viotti, Francesco Carbone and Frédéric Dias
Journal of Fluid Mechanics 748 768 (2014)
https://doi.org/10.1017/jfm.2014.217

High order well-balanced CDG–FE methods for shallow water waves by a Green–Naghdi model

Maojun Li, Philippe Guyenne, Fengyan Li and Liwei Xu
Journal of Computational Physics 257 169 (2014)
https://doi.org/10.1016/j.jcp.2013.09.050

Phase-resolving integral wave evolution in a coastal environment

Rodney J. Sobey
Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 167 (4) 167 (2014)
https://doi.org/10.1680/eacm.14.00011

Extreme wave runup on a vertical cliff

Francesco Carbone, Denys Dutykh, John M. Dudley and Frédéric Dias
Geophysical Research Letters 40 (12) 3138 (2013)
https://doi.org/10.1002/grl.50637

On the Galilean Invariance of Some Nonlinear Dispersive Wave Equations

Angel Duran, Denys Dutykh and Dimitrios Mitsotakis
Studies in Applied Mathematics 131 (4) 359 (2013)
https://doi.org/10.1111/sapm.12015

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

DENYS DUTYKH, DIDIER CLAMOND, PAUL MILEWSKI and DIMITRIOS MITSOTAKIS
European Journal of Applied Mathematics 24 (5) 761 (2013)
https://doi.org/10.1017/S0956792513000168

Step Soliton Generalized Solutions of the Shallow Water Equations

A. C. Alvarez, A. Meril, B. Valiño-Alonso and Armin Troesch
Journal of Applied Mathematics 2012 (1) (2012)
https://doi.org/10.1155/2012/910659

Seismically generated tsunamis

Diego Arcas and Harvey Segur
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 (1964) 1505 (2012)
https://doi.org/10.1098/rsta.2011.0457

The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation

Denys Dutykh, Raphaël Poncet and Frédéric Dias
European Journal of Mechanics - B/Fluids 30 (6) 598 (2011)
https://doi.org/10.1016/j.euromechflu.2011.05.005

Finite volume schemes for dispersive wave propagation and runup

Denys Dutykh, Theodoros Katsaounis and Dimitrios Mitsotakis
Journal of Computational Physics 230 (8) 3035 (2011)
https://doi.org/10.1016/j.jcp.2011.01.003

A high‐order Petrov–Galerkin finite element method for the classical Boussinesq wave model

Paulo Avilez‐Valente and Fernando J. Seabra‐Santos
International Journal for Numerical Methods in Fluids 59 (9) 969 (2009)
https://doi.org/10.1002/fld.1846

Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation

David Lannes and Philippe Bonneton
Physics of Fluids 21 (1) 016601 (2009)
https://doi.org/10.1063/1.3053183

Dispersion and blockage effects in the flow over a sill

V. Yu. Liapidevskii and K. N. Gavrilova
Journal of Applied Mechanics and Technical Physics 49 (1) 34 (2008)
https://doi.org/10.1007/s10808-008-0005-7

A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: model development and analysis

R. Cienfuegos, E. Barthélemy and P. Bonneton
International Journal for Numerical Methods in Fluids 51 (11) 1217 (2006)
https://doi.org/10.1002/fld.1141

Résolution numérique en volumes finis d'un système d'équations de Serre étendu

Rodrigo Cienfuegos, Eric Barthélemy and Philippe Bonneton
Revue Européenne de Génie Civil 9 (7-8) 889 (2005)
https://doi.org/10.1080/17747120.2005.9692791

Short wave phase shifts by large free surface solitary waves: Experiments and models

Katell Guizien and Eric Barthélemy
Physics of Fluids 13 (12) 3624 (2001)
https://doi.org/10.1063/1.1409964

Numerical solution of the generalized Serre equations with the MacCormack finite‐difference scheme

J. S. Antunes Do Carmo, F. J. Seabra Santos and A. B. Almeida
International Journal for Numerical Methods in Fluids 16 (8) 725 (1993)
https://doi.org/10.1002/fld.1650160805

Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle

Fernando J. Seabra-Santos, Dominique P. Renouard and André M. Temperville
Journal of Fluid Mechanics 176 117 (1987)
https://doi.org/10.1017/S0022112087000594

Streamline Curvature Effects in Distribution Channels

W H Hager and K Hager
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 199 (3) 165 (1985)
https://doi.org/10.1243/PIME_PROC_1985_199_111_02