The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
TIN-KAN HUNG , ENZO O. MACAGNO
La Houille Blanche, 4 (1966) 391-401
Published online: 2010-03-24
This article has been cited by the following article(s):
42 articles
MOMENTUM AND ENERGY TRANSFER IN CARDIAC PUMPING
TIN-KAN HUNG, SEYED S. KHALAFVAND, EDDIE Y.-K. NG and LIANG ZHONG Journal of Mechanics in Medicine and Biology (2025) https://doi.org/10.1142/S0219519425500083
Mass transfer intensification of slug flow by interfacial deformation at low flow rate in the microchannels with periodic expansion units
Yang Han, Hengbo Li, Taotao Fu, Dayu Liu and Xiaoda Wang Chemical Engineering Science 275 118743 (2023) https://doi.org/10.1016/j.ces.2023.118743
Experimental and numerical studies of liquid-liquid two-phase flows in microchannel with sudden expansion/contraction cavities
Jingzhi Zhang, Li Lei, Huiling Li, Gongming Xin and Xinyu Wang Chemical Engineering Journal 433 133820 (2022) https://doi.org/10.1016/j.cej.2021.133820
Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions
Shizhe Zhang, Chunying Zhu, Huisheng Feng, Taotao Fu and Youguang Ma Chemical Engineering Science 229 116040 (2021) https://doi.org/10.1016/j.ces.2020.116040
Laminar flow in three-dimensional square–square expansions
P.C. Sousa, P.M. Coelho, M.S.N. Oliveira and M.A. Alves Journal of Non-Newtonian Fluid Mechanics 166 (17-18) 1033 (2011) https://doi.org/10.1016/j.jnnfm.2011.06.002
Modeled Lattice Boltzmann Equation and the Constant-Density Assumption
S. C. Fu and R. M. C. So AIAA Journal 47 (12) 3038 (2009) https://doi.org/10.2514/1.41735
A Lattice Boltzmann Method Based Numerical Scheme for Microchannel Flows
S. C. Fu, W. W. F. Leung and R. M. C. So Journal of Fluids Engineering 131 (8) 081401 (2009) https://doi.org/10.1115/1.3155993
The effect of expansion ratio for creeping expansion flows of UCM fluids
R.J. Poole, F.T. Pinho, M.A. Alves and P.J. Oliveira Journal of Non-Newtonian Fluid Mechanics 163 (1-3) 35 (2009) https://doi.org/10.1016/j.jnnfm.2009.06.004
Data‐driven Magnetohydrodynamic Model for Active Region Evolution
S. T. Wu, A. H. Wang, Yang Liu and J. Todd Hoeksema The Astrophysical Journal 652 (1) 800 (2006) https://doi.org/10.1086/507864
Summer surface circulation on the Newfoundland shelf and grand banks: The roles of local density gradients and remote forcing
Jinyu Sheng and Keith R. Thompson Atmosphere-Ocean 34 (2) 257 (1996) https://doi.org/10.1080/07055900.1996.9649565
On two- and three-dimensional expansion flows
A. Baloch, P. Townsend and M.F. Webster Computers & Fluids 24 (8) 863 (1995) https://doi.org/10.1016/0045-7930(95)00020-D
Numerical analysis of viscous, incompressible flow in a diverging-converging RUC
D. W. Ruth and H. Ma Transport in Porous Media 13 (2) 161 (1993) https://doi.org/10.1007/BF00654408
Numerical Methods for Partial Differential Equations
WILLIAM F. AMES Numerical Methods for Partial Differential Equations 326 (1992) https://doi.org/10.1016/B978-0-08-057130-0.50012-9
Numerical simulation of viscous flows in channels with a step
D.M. Hawken, P. Townsend and M.F. Webster Computers & Fluids 20 (1) 59 (1991) https://doi.org/10.1016/0045-7930(91)90027-F
Numerical study of laminar separation over an annular backstep
A. Gaber Mohamed, Daniel T. Valentine and Richard E. Hassel Computers & Fluids 20 (2) 121 (1991) https://doi.org/10.1016/0045-7930(91)90016-B
Hydrodynamic models of boulder berm deposition
P.A. Carling Geomorphology 2 (4) 319 (1989) https://doi.org/10.1016/0169-555X(89)90018-4
Numerical Analysis of Steady Flow in a 90° Circular Section Bend
Ren Jei Liou, Marlyn E. Clark, James M. Robertson and Le‐Chung Cheng Journal of Engineering Mechanics 114 (11) 1871 (1988) https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1871)
Flow of an inelastic Non-Newtonian fluid through an abrupt contraction: A recalculation
M. G. N. Perera Rheologica Acta 27 (1) 113 (1988) https://doi.org/10.1007/BF01372457
Numerical solution of the separating flow due to an obstruction
M. Nallasamy Computers & Fluids 14 (1) 59 (1986) https://doi.org/10.1016/0045-7930(86)90038-1
Steady flow past sudden expansions at large Reynolds number. Part I: Boundary layer solutions
Frank S. Milos and Andreas Acrivos Physics of Fluids 29 (5) 1353 (1986) https://doi.org/10.1063/1.865700
Flow through a venous valve and its implication for thrombus formation
Takeshi Karino and Mineo Motomiya Thrombosis Research 36 (3) 245 (1984) https://doi.org/10.1016/0049-3848(84)90224-X
Computational Techniques for Differentail Equations
John Noye North-Holland Mathematics Studies, Computational Techniques for Differentail Equations 83 95 (1984) https://doi.org/10.1016/S0304-0208(08)71201-5
Bend Flow Calculational Methods Compared
Ren J. Liou, Marlyn E. Clark, James M. Robertson and Le‐Chung Cheng Journal of Engineering Mechanics 110 (11) 1579 (1984) https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1579)
Sedimentary Structures Their Character and Physical Basis Volume II
Developments in Sedimentology, Sedimentary Structures Their Character and Physical Basis Volume II 30 561 (1982) https://doi.org/10.1016/S0070-4571(08)71024-0
The Oseen model for internal separated flows
S. V. Ramakrishnan and P. N. Shankar Journal of Engineering Mathematics 16 (4) 325 (1982) https://doi.org/10.1007/BF00037734
Steady flow through a channel with a symmetrical constriction in the form of a step
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 372 (1750) 393 (1980) https://doi.org/10.1098/rspa.1980.0119
Numerical prediction of separated flows
D. J. Atkins, S. J. Maskell and M. A. Patrick International Journal for Numerical Methods in Engineering 15 (1) 129 (1980) https://doi.org/10.1002/nme.1620150111
Internal separated flows at large Reynolds number
Anand Kumar and Kirit S. Yajnik Journal of Fluid Mechanics 97 (1) 27 (1980) https://doi.org/10.1017/S0022112080002418
Mass transport to walls of stenosed arteries: Variation with Reynolds number and blood flow separation
Gary Schneiderman, Christopher G. Ellis and Thomas K. Goldstick Journal of Biomechanics 12 (11) 869 (1979) https://doi.org/10.1016/0021-9290(79)90172-6
The separating flow through a severely constricted symmetric tube
F. T. Smith Journal of Fluid Mechanics 90 (4) 725 (1979) https://doi.org/10.1017/S0022112079002500
A computed model of the motion of a disk mitral valve in the left cardiac ventricle
V. I. Shumakov, V. M. Zaiko and I. M. Starobin Polymer Mechanics 14 (3) 407 (1978) https://doi.org/10.1007/BF00866693
Critical Reynolds Number For Orifice And Nozzle Flows In Pipes
N. S. Lakshmana Rao, K. Sridharan and S. H. Alvi Journal of Hydraulic Research 15 (2) 167 (1977) https://doi.org/10.1080/00221687709499654
Long range memory effects in flows involving abrupt changes in geometry
M.G.N. Perera and K. Walters Journal of Non-Newtonian Fluid Mechanics 2 (2) 191 (1977) https://doi.org/10.1016/0377-0257(77)80043-8
Flow behaviour of blood cells and rigid spheres in an annular vortex
Philosophical Transactions of the Royal Society of London. B, Biological Sciences 279 (967) 413 (1977) https://doi.org/10.1098/rstb.1977.0095
Numerical Methods for Partial Differential Equations
WILLIAM F. AMES Numerical Methods for Partial Differential Equations 230 (1977) https://doi.org/10.1016/B978-0-12-056760-7.50011-6
Calculation of plane pulsatile flow past wall obstacles
L.C. Cheng, J.M. Robertson and M.E. Clark Computers & Fluids 2 (3-4) 363 (1974) https://doi.org/10.1016/0045-7930(74)90025-5
Low Reynolds number flow over a plane symmetric sudden expansion
F. Durst, A. Melling and J. H. Whitelaw Journal of Fluid Mechanics 64 (1) 111 (1974) https://doi.org/10.1017/S0022112074002035
Numerical calculations of plane oscillatory non-uniform flow—II. Parametric study of pressure gradient and frequency with square wall obstacles
L.C. Cheng, J.M. Robertson and M.E. Clark Journal of Biomechanics 6 (5) 521 (1973) https://doi.org/10.1016/0021-9290(73)90010-9
Numerical calculations of oscillating flow in the vicinity of square wall obstacles in plane conduits
L.C. Cheng, M.E. Clark and J.M. Robertson Journal of Biomechanics 5 (5) 467 (1972) https://doi.org/10.1016/0021-9290(72)90005-X
Numerical solutions of laminar separated flows
PATRICK J. ROACHE and THOMAS J. MUELLER AIAA Journal 8 (3) 530 (1970) https://doi.org/10.2514/3.5701
Computational and experimental study of a captive annular eddy
Enzo O. Macagno and Tin-Kan Hung Journal of Fluid Mechanics 28 (1) 43 (1967) https://doi.org/10.1017/S0022112067001892
Melting of Carbon Deoxidized Pure Iron in Magnesia Crucible of Low Silica Content. (Pure iron melting-II )
Hajime NAKAMURA, Kazuo TACHIMOTO, Yoshikazu KURIYAMA, Yoshinori TSUNEHISA and Kanichi FUKUI Tetsu-to-Hagane 52 (9) 1512 (1966) https://doi.org/10.2355/tetsutohagane1955.52.9_1512