Accès gratuit
La Houille Blanche
Numéro 5, Octobre 2015
Page(s) 5 - 15
Publié en ligne 10 novembre 2015
  • Aleixo R., Soares-Frazão S. and Zech Y. (2011) — Velocity-field measurements in a dam-break flow using a PTV Voronoï imaging technique. Experiments in Fluids 50(6) 1633-1649 [CrossRef] [Google Scholar]
  • Aleixo R., Soares-Frazão S., Altinakar M. and Zech Y. (2013) — The Gate Removal Effect in the Initial Instants of the Dam-break Flow. Proceedings 35th IAHR Congress , Chengdu, China, USB-key. 10 pages [Google Scholar]
  • Bermùdez A. and Vázquez M.E. (1994) — Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids . 23(8) 1049-1071 [CrossRef] [MathSciNet] [Google Scholar]
  • Biscarini C. Di Francesco S. and Manciola P. (2010) — CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 14 705-718 [CrossRef] [Google Scholar]
  • Braschi G. and Gallati M. (1992) — A conservative flux prediction algorithm for the explicit computation of transcritical flow in natural streams, Proc. Hydr. Eng. Software IV, CMP , Southampton. 381-394 [Google Scholar]
  • Capart H. (2000) — Dam-break induced geomorphic flows and the transition from solid- to fluid-like behaviour across evolving interfaces. PhD thesis, UCL, Belgium [Google Scholar]
  • Capart H., and Young D.L. (2002) — Two-layer shallow water computations of torrential geomorphic flows. Proc. River Flow 2002 , Louvain-la-Neuve, Belgium. Balkema, Rotterdam, Netherlands . 1003-1012 [Google Scholar]
  • Ferziger J.H. and Perić M. (2002) — Computational methods for fluid dynamics Springer, Heidelberg [CrossRef] [Google Scholar]
  • Gomez-Gesteira M., Rogers B.D., Dalrymple R.A. and Crespo A.J.C. (2010) — State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research . 48(S1) 6-27 [CrossRef] [Google Scholar]
  • Goutiere L., Soares-Frazão S., Zech Y. (2011) — Dam-break flow on mobile bed in abruptly widening channel: experimental data. Journal of Hydraulic Research . 49(3) 367-371 [CrossRef] [Google Scholar]
  • Guinot V. (2008) — Wave propagation in fluids. Models and numerical techniques. ISTE-Wiley [CrossRef] [Google Scholar]
  • Harten A., Lax P.D. and Van Leer B. (1983) — On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. J. Comput. Phys . 50 235-269 [CrossRef] [MathSciNet] [Google Scholar]
  • Patankar S.V. (1980) — Numerical heat transfer and fluid flow. Taylor & Francis [Google Scholar]
  • Petaccia G., Natale L., Savi F., Velickovic M., Zech Y. and Soares-Frazão S. (2013) — Flood wave propagation in steep mountain rivers. Journal of Hydroinformatics . 15(1) 120-137 [CrossRef] [Google Scholar]
  • Roe P. L. (1981) — Approximate Riemann solvers, parameter vectors and difference scheme. J. Comp. Phys . 43 357-372 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Savary C. (2007) — Transcritical transient flow over mobile beds. Boundary conditions treatment in a two-layer shal-low-water model. PhD thesis, UCL, Belgium [Google Scholar]
  • Soares-Frazão S. (2002) — Dam-break induced flows in complex topographies. Theoretical, numerical and experimental approaches. PhD thesis, UCL, Belgium [Google Scholar]
  • Soares-Frazão S. and Zech Y. (2002) — Dam-break in channels with 90° bend. Journal of Hydraulic Engineering . 128(11) 956-968 [CrossRef] [Google Scholar]
  • Soares-Frazão S., Lories D., Taminiau S. and Zech Y. (2003) — Dam-break flow in a channel with a sudden enlargement. Proceedings 30th IAHR Congress , Thessaloniki, Greece. C-II 221-228 [Google Scholar]
  • Soares-Frazão S. and Guinot V. (2007) — An eigenvector-based linear reconstruction scheme for the shallow-water equations on two-dimensional unstructured meshes. Int. J. Numer. Meth. Fluids. 53(1) 23-55 [CrossRef] [Google Scholar]
  • Soares-Frazão S., Canelas R., Cao Z., Cea L., Chaudhry H., Die Moran A., El Kadi K., Ferreira R., Cadórniga I.F., Gonzalez-Ramirez N., Greco M., Huang W., Imran J., Le Coz J., Marsooli R., Paquier A., Pender G., Pontillo M., Puertas J., Spinewine B., Swartenbroekx C., Tsubaki R., Villaret C., Wu W., Yue Z. and Zech Y. (2012) — Dam-break flows over mobile beds: Experiments and benchmark tests for numerical models. Journal of Hydraulic Research . 50(4) 364-375 [CrossRef] [Google Scholar]
  • Spinewine B. (2005) — Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD thesis, UCL, Belgium [Google Scholar]
  • Spinewine B. and Capart H. (2013) — Intense bed-load due to a sudden dam-break. Journal of Fluid Mechanics . 731 579-614 [CrossRef] [Google Scholar]
  • Swartenbroekx C., Zech Y. and Soares-Frazão S. (2013) — Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport Int. J. Numer. Meth. Fluids. 73(5) 477-508 [CrossRef] [Google Scholar]
  • Toro E.F. (1997) — Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction. Springer-Verlag, Berlin, Germany [CrossRef] [Google Scholar]
  • Zech Y., Soares-Frazão S., Spinewine B., Savary C. and Goutière L. (2009) — Inertia effects in bed-load transport models. Canadian Journal of Civil Engineering . 36 (10) 1587-1597 [CrossRef] [Google Scholar]