Free Access
Issue
La Houille Blanche
Number 4, Septembre 2011
Page(s) 49 - 54
DOI https://doi.org/10.1051/lhb/2011040
Published online 27 September 2011
  • Agrawal A. And Prabhu S. V. (2008) — Survey on measurement of tangential momentum accommodation coefficient. J. Vac. Sci. Technom. [Google Scholar]
  • Arkilic E., Breuer K. & Schmidt M. (2001) — Mass flow and tangential momentum accommodation in silicon micro-machined channels. J. Fluid Mech. 437 29-43 [CrossRef] [Google Scholar]
  • Arkilic E. B., Schmidt M. A. & Breuer K. S. (1997) — Gaseous slip flow in long microchannels. J. Microelectromech. syst.. 6(2) 167-178 [CrossRef] [Google Scholar]
  • Cercignani C. & Daneri A. (1963) — Flow of a rarefied gas between two parallel plates. Phys. Fluids. 6 993-996 [CrossRef] [Google Scholar]
  • Colin S., Lalonde P. & Caen R. (2004) — Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Engng. 25(3) 23-30 [Google Scholar]
  • Ewart T., Perrier P., Graur I. A. & Méolans J. G. (2006) — Mass flow rate measurements in gas micro flows. Exps. Fluids. 41 487-498 [CrossRef] [Google Scholar]
  • Ewart T., Perrier P., Graur I. A. & M´Eolans J. G. (2007) — Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech. 584 337-356 [CrossRef] [Google Scholar]
  • Graur I. A. & M´Eolans J. G. & Zeitoun D. E. (2006) — Analytical and numerical description for isothermal gas flows in microchannels. Microfluid. Nanofluid. 2 64-77 [CrossRef] [Google Scholar]
  • Harley J., Huang Y., Bau H. & Zemel J. (1995) — Gas flows in microchannels. J.Fluid Mech.. 284 257-274 [Google Scholar]
  • Karniadakis G. E. & Beskok A. (2002) — Microflows : Fundamentals and Simulation. Springer [Google Scholar]
  • Kogan M. N. (1969) — Rarefied Gas Dynamics. Plenum. [CrossRef] [Google Scholar]
  • Lalonde P. (2001) — Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD Thesis Report, Institut National des Sciences Appliquées de Toulouse, France [Google Scholar]
  • Loyalka S. K., Petrellis N. & Stvorick S. T. (1975) — Some numerical results for the BGK model : thermal creep and viscous slip problems with arbitrary accommodation of the surface. J. Phys. Fluids. 18 1094 [CrossRef] [Google Scholar]
  • Maurer J., Tabelin P., Joseph P. & Willaime H. (2003) — Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids. 15 2613-2621 [CrossRef] [Google Scholar]
  • Pitakarnnop J., Varoutis S., Valougeorgis D., Geoffroy S., Baldas L., & Colin S. (2010) — A novel experimental setup for gas microflows. Microfluid Nanofluid. 8 57-72 [CrossRef] [Google Scholar]
  • Porodnov B. T., Suetin P. E., Borisov S. F. & Akinshin V. D. (1974) — Experimental investigation rarefied gas flow in different channels. J. Fluid Mech. 64 417-437 [CrossRef] [Google Scholar]
  • Sharipov F. & Seleznev V. (1998) — Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data. 27(3) 657-709 [CrossRef] [Google Scholar]
  • Sharipov F. (1999) — Rarefied gas flow through a long rectangular channel. J. Vac. Sci. Technol. 17(5) 3062-3066 [CrossRef] [Google Scholar]
  • Zohar Y., Lee S. Y. K., Lee W. Y., Jiang L. & Tong P. (2002) — Subsonic gas flow in a straight and uniform microchannel. J. Fluid Mech. 472 125-151 [CrossRef] [Google Scholar]