Free Access
Issue
La Houille Blanche
Number 4, Septembre 2011
Page(s) 49 - 54
DOI https://doi.org/10.1051/lhb/2011040
Published online 27 September 2011
  • Agrawal A. And Prabhu S. V. (2008) — Survey on measurement of tangential momentum accommodation coefficient. J. Vac. Sci. Technom. [Google Scholar]
  • Arkilic E., Breuer K. & Schmidt M. (2001) — Mass flow and tangential momentum accommodation in silicon micro-machined channels. J. Fluid Mech. 437 29-43 [CrossRef] [Google Scholar]
  • Arkilic E. B., Schmidt M. A. & Breuer K. S. (1997) — Gaseous slip flow in long microchannels. J. Microelectromech. syst.. 6(2) 167-178 [CrossRef] [Google Scholar]
  • Cercignani C. & Daneri A. (1963) — Flow of a rarefied gas between two parallel plates. Phys. Fluids. 6 993-996 [CrossRef] [Google Scholar]
  • Colin S., Lalonde P. & Caen R. (2004) — Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Engng. 25(3) 23-30 [CrossRef] [Google Scholar]
  • Ewart T., Perrier P., Graur I. A. & Méolans J. G. (2006) — Mass flow rate measurements in gas micro flows. Exps. Fluids. 41 487-498 [CrossRef] [Google Scholar]
  • Ewart T., Perrier P., Graur I. A. & M´Eolans J. G. (2007) — Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech. 584 337-356 [CrossRef] [Google Scholar]
  • Graur I. A. & M´Eolans J. G. & Zeitoun D. E. (2006) — Analytical and numerical description for isothermal gas flows in microchannels. Microfluid. Nanofluid. 2 64-77 [CrossRef] [Google Scholar]
  • Harley J., Huang Y., Bau H. & Zemel J. (1995) — Gas flows in microchannels. J.Fluid Mech.. 284 257-274 [CrossRef] [Google Scholar]
  • Karniadakis G. E. & Beskok A. (2002) — Microflows : Fundamentals and Simulation. Springer [Google Scholar]
  • Kogan M. N. (1969) — Rarefied Gas Dynamics. Plenum. [CrossRef] [Google Scholar]
  • Lalonde P. (2001) — Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD Thesis Report, Institut National des Sciences Appliquées de Toulouse, France [Google Scholar]
  • Loyalka S. K., Petrellis N. & Stvorick S. T. (1975) — Some numerical results for the BGK model : thermal creep and viscous slip problems with arbitrary accommodation of the surface. J. Phys. Fluids. 18 1094 [CrossRef] [Google Scholar]
  • Maurer J., Tabelin P., Joseph P. & Willaime H. (2003) — Second-order slip laws in microchannels for helium and nitrogen. Phys. Fluids. 15 2613-2621 [CrossRef] [Google Scholar]
  • Pitakarnnop J., Varoutis S., Valougeorgis D., Geoffroy S., Baldas L., & Colin S. (2010) — A novel experimental setup for gas microflows. Microfluid Nanofluid. 8 57-72 [CrossRef] [Google Scholar]
  • Porodnov B. T., Suetin P. E., Borisov S. F. & Akinshin V. D. (1974) — Experimental investigation rarefied gas flow in different channels. J. Fluid Mech. 64 417-437 [CrossRef] [Google Scholar]
  • Sharipov F. & Seleznev V. (1998) — Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data. 27(3) 657-709 [CrossRef] [Google Scholar]
  • Sharipov F. (1999) — Rarefied gas flow through a long rectangular channel. J. Vac. Sci. Technol. 17(5) 3062-3066 [CrossRef] [Google Scholar]
  • Zohar Y., Lee S. Y. K., Lee W. Y., Jiang L. & Tong P. (2002) — Subsonic gas flow in a straight and uniform microchannel. J. Fluid Mech. 472 125-151 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.